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Abstract Organizational ambidexterity (OA) is an essen-

tial capability for surviving in dynamic business environ-

ments that advocates the simultaneous engagement in

exploration and exploitation. Over the last decades,

knowledge on OA has substantially matured, covering

insights into antecedents, outcomes, and moderators of OA.

However, there is little prescriptive knowledge that offers

guidance on how to put OA into practice and to tackle the

trade-off between exploration and exploitation. To address

this gap, the authors adopt the design science research

paradigm and propose an economic decision model as

artifact. The decision model assists organizations in

selecting and scheduling exploration and exploitation pro-

jects to become ambidextrous in an economically reason-

able manner. As for justificatory knowledge, the decision

model draws from prescriptive knowledge on project

portfolio management and value-based management, and

from descriptive knowledge related to OA to structure the

field of action. To evaluate the decision model, its design

specification is discussed against theory-backed design

objectives and with industry experts. The paper also

instantiates the decision model as a software prototype and

applies the prototype to a case based on real-world data.

Keywords Organizational ambidexterity � Exploration �
Exploitation � Project portfolio management � Value-based
management � Decision model

1 Introduction

In dynamic business environments, organizations face

substantial challenges (Agostini et al. 2016; Jansen et al.

2009). On the one hand, they must explore opportunities of

innovative products and processes and engage in emerging

markets. On the other hand, they must exploit existing

products and processes in mature markets via efficient

operations (Eisenhardt et al. 2010; Moreno-Luzon et al.

2014; Turner et al. 2013). As exploration and exploitation

strive for different objectives and compete for scarce

resources, there is a trade-off between both modes

(O’Reilly and Tushman 2013). Currently, many organiza-

tions fail in developing organizational ambidexterity (OA),

the dual capability that enables organizations to tackle the

trade-off between exploration and exploitation (explo-

ration/exploitation trade-off) in order to achieve long-term

success in dynamic business environments (Birkinshaw

and Gupta 2013; He and Wong 2004). One reason is that

organizations do not know how to put OA into practice (He

and Wong 2004; Jansen et al. 2006), a circumstance calling

for further research (Moreno-Luzon et al. 2014; Pelle-

grinelli et al. 2015).
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Exploration and exploitation are key concepts of OA

(Duncan 1976; March 1991; O’Reilly and Tushman 2013).

Many disciplines including innovation and technology

management, strategic management, or organizational

design have extensively discussed OA in general as well as

exploration and exploitation in particular (Raisch and

Birkinshaw 2008; Simsek 2009). Correspondingly, extant

OA research can be split into three streams: outcomes,

antecedents, and moderators (O’Reilly and Tushman

2013). The first stream supports that OA entails superior

firm performance in terms of sales growth, profitability,

and operational performance (Gibson and Birkinshaw

2004; He and Wong 2004; Lubatkin et al. 2006). The

second stream investigates antecedents of OA, i.e. struc-

tures or mechanisms that describe how organizations

should balance exploration and exploitation (O’Reilly and

Tushman 2013). While early studies favored a temporal

sequencing of exploration and exploitation, recent studies

make the case for focusing on both modes simultaneously

(Siggelkow and Levinthal 2003; Tushman and O’Reilly

1996; Tushman and Romanelli 1985). Simultaneous

approaches, in turn, split into structural, contextual, and

leadership-based OA, distinguishing whether exploration

and exploitation are implemented via dual structures,

capabilities of individuals, or leadership processes (Gibson

and Birkinshaw 2004; Smith and Tushman 2005; Tushman

and O’Reilly 1996). Thereby, structural approaches not

only focus on the organizational level, but also on the

group and individual level (Heckmann et al. 2016; Lee

et al. 2015; Turner et al. 2015). Particularly, structural OA

advocates that the exploration/exploitation trade-off can be

tackled via projects (Chandrasekaran et al. 2012; Pelle-

grinelli et al. 2015). However, related work is rare and

remains conceptual. The third research stream investigates

how environmental factors affect or moderate the rela-

tionship among antecedents and firm performance (Auh

and Menguc 2005; Jansen et al. 2009; Sidhu et al. 2004).

Our analysis revealed that research on OA is dominated

by conceptual and empirical studies. The importance of

pursuing exploration and exploitation has been highlighted

repeatedly, and the conceptual distinction between both

OA modes has been studied intensively (Gibson and

Birkinshaw 2004; He and Wong 2004; Jansen et al. 2006).

However, there is a lack of prescriptive knowledge that

helps organizations to put OA into practice by tackling the

exploration/exploitation trade-off. Specifically, there is

little knowledge on how organization can prioritize

investments in exploration and exploitation over time

(O’Reilly and Tushman 2013; Pellegrinelli et al. 2015;

Röder et al. 2014). To address this gap and to extend

existing conceptual work on OA, we build on the structural

approach and leverage knowledge from project portfolio

management (PPM) and value-based management (VBM).

Correspondingly, our research question is the following:

How can organizations decide which exploration and

exploitation projects they should implement to become

ambidextrous in an economically reasonable manner?

To answer this research question, we adopted the design

science research (DSR) paradigm (Gregor and Hevner

2013). Our artifact is an economic decision model that

assists organizations in the selection and scheduling of

exploration and exploitation projects. The decision model

prioritizes project portfolios, i.e. unique compilations of

exploration and exploitation projects, in terms of their

contribution to the organization’s long-term firm value,

recommending the implementation of the value-maximiz-

ing portfolio. As already outlined, the decision model

draws from prescriptive knowledge on PPM, i.e. project

portfolio selection and scheduling, and VBM, i.e. objective

functions for corporate decision-making as justificatory

knowledge. It also leverages descriptive knowledge on OA

to structure the field of action.

This setup is sensible for multiple reasons: First, deci-

sion models are valid design artifacts (March and Smith

1995). Second, PPM enables the selection and scheduling

of projects, while balancing multiple objectives, account-

ing for constraints, and building on project types with

specific effects (Pellegrinelli et al. 2015; Petit 2012).

Exploration and exploitation projects that are used in the

proposed decision model cover both OA modes and their

effects. PPM provides sufficient flexibility to cope with

dynamic business environments, as once-compiled project

portfolios can be reviewed repeatedly (Martinsuo et al.

2014; Petit and Hobbs 2010). PPM is a mature discipline

and has been adopted in many companies (Project Man-

agement Institute 2013). It has also been shown to be a

useful analytical lens for balancing exploration and

exploitation (Pellegrinelli et al. 2015). Third, value orien-

tation is an accepted paradigm of corporate decision-

making that enables decisions in line with the objective of

maximizing an organization’s long-term firm value (Buhl

et al. 2011; Damodaran 2012; vom Brocke and Sonnenberg

2015). VBM complements PPM, as it provides objective

functions for the comparison of decision alternatives, i.e.

project portfolios, by integrating project effects into a

single economic value judgment (Bolsinger 2015). Only

the combined application of PPM and VBM in the OA

context makes it possible to determinewhich exploration

and exploitation projects organizations should implement

to become ambidextrous in an economically reasonable

manner. Finally, this study builds on and extends our prior

work on business process improvement and capability

development by focusing on the exploration/exploitation

trade-off and taking a PPM perspective (anonymized).

Our study is structured along the DSR process provided

by Peffers et al. (2008). Having identified and justified the
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research problem in this section, we compile relevant jus-

tificatory knowledge and derive design objectives in

Sect. 2. In Sect. 3, we outline our research method and

evaluation strategy. In Sect. 4, we introduce our decision

model’s design specification. In Sect. 5, we report on our

evaluation activities. We conclude in Sect. 6 by summa-

rizing key results, discussing implications and limitations,

and pointing to directions for future research.

2 Theoretical Background

2.1 Organizational Ambidexterity

In general, ambidexterity refers to the ability ‘‘to use the

right and left hands equally well’’ (Turner et al. 2015). In

particular, OA refers to an organization’s dual capability of

adapting and responding to environmental change by

engaging in exploration and exploitation (Tushmann and

O’Reilly 1996). As such, OA is vital for surviving in

dynamic business environments (Agostini et al. 2016;

Jansen et al. 2009). Below, we provide details on explo-

ration and exploitation, i.e. two key concepts of OA, before

we discuss OA from the so-called behavioral and outcome

perspectives (Correia-Lima et al. 2013; Simsek 2009). The

outcome perspective reflects the first research stream pre-

sented in the introduction, whereas the behavioral per-

spective covers the second stream (O’Reilly and Tushman

2013; Simsek 2009).

Exploration strives for leveraging the opportunities of

innovative products and processes (O’Reilly and Tushman

2013). Taking an outside-in perspective, activities associ-

ated with exploration are discovery, experimentation, risk-

taking, and radical innovation (He and Wong 2004; March

1991). Exploitation strives for the efficient operations of

existing products and processes (Pellegrinelli et al. 2015;

O’Reilly and Tushman 2008). Taking an inward-driven

perspective, associated activities are problem solving, risk

reduction, incremental innovation, and continuous

improvement (He and Wong 2004; March 1991). As

exploration and exploitation strive for different objectives,

there is a trade-off between both modes (Turner et al.

2013). In case of extreme exploration, organizations will

abound in innovative products and processes, but their

economic potential will not be tapped, as learning curve

effects are not realized (Prange and Schlegelmilch 2016;

Sarkees and Hulland 2009). The operations of existing

products and processes is not efficient either. In case of

extreme exploitation, organizations feature highly efficient

operations, but neglect innovation (Prange and Sch-

legelmilch 2016; Sarkees and Hulland 2009). They get

stuck in evolution and run out of growth prospects

(Levinthal and March 1993; Schilling 2015). Organizations

that neglect exploration may be excluded from opportunity

spaces (Benner and Tushman 2003). As such extreme

strategies jeopardize corporate success, exploration and

exploitation must be balanced (O’Reilly and Tushman

2008; Prange and Schlegelmilch 2016; Sarkees and Hul-

land 2009).

From a behavioral perspective, exploration and

exploitation are linked to the resource-based view of the

firm and dynamic capability theory, where capabilities are

defined as repeatable patterns of action in the use of

assets (O’Reilly and Tushman 2008; Wade and Hulland

2004). As stable resource configurations do not guarantee

sustained competitive advantage in dynamic business

environments, organizations also require capabilities that

facilitate and govern change (Collis 1994; Teece 2007).

Thus, capabilities are split into operational and dynamic

capabilities (Pavlou and El Sawy 2011). Operational and

dynamic capabilities relate to exploitation and explo-

ration, respectively. Operational capabilities refer to the

effectiveness and efficiency of daily operations and the

organization of work (Winter 2003; Zollo and Winter

2002). The organization of work can, for example, be

characterized via automation degree, number of process/

product variants, nonroutine ratio (i.e. the fraction of

process executions that require special treatment), or

mandatory task ratio (i.e. the fraction of routine tasks that

must be executed in nonroutine operations) (Afflerbach

et al. 2014; Lillrank 2003; Linhart et al. 2015). Dynamic

capabilities, in contrast, integrate, build, and reconfig-

ure operational capabilities (Teece and Pisano 1994; Zollo

and Winter 2002). Dynamic capabilities affect an orga-

nization’s output indirectly through operational capabili-

ties (Helfat and Peteraf 2003). Dynamic capabilities are

split into sensing, seizing, and transforming capabilities

(O’Reilly and Tushman 2008; Teece 2007). Sensing

comprises the scanning and searching for new techno-

logical developments, changing customer needs, or new

target markets, or problems (Teece 2007). Seizing capa-

bilities address emerging opportunities and problem

solutions by investment strategies and resource allocation

(Teece 2007). Transforming refers to the implementation

of opportunities and solutions (Teece 2007). Thereby,

transforming capabilities reflect an organization’s ability

to cope with nonroutine activities on short notice (flexi-

bility-to-use) and to implement future exploration and

exploitation projects (flexibility-to-change) (Afflerbach

et al. 2014; Gebauer and Schober 2006).

From an outcome perspective, exploration and

exploitation have different effects (He and Wong 2004;

Jansen et al. 2009). As exploration strives for innovative

products and processes based on radical innovation, it

affects an organization’s innovation degree (He and Wong

2004). As, in the beginning, organizations are
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inexperienced in the operation of innovative products and

processes, exploration partly destroys once-achieved

learning effects (Sarkees and Hulland 2009). As exploita-

tion strives for efficient operations via continuous

improvement and incremental innovation, it primarily

affects operational performance (Dumas et al. 2013;

O’Reilly and Tushman 2008). Operational performance is a

multi-dimensional construct, operationalized in terms of

performance criteria such as time, cost, or quality (Franco-

Santos et al. 2012; Reijers and Mansar 2005). As

improving operational performance regarding one criterion

generally worsens other performance criteria, not only a

trade-off between exploration and exploitation, but also

among performance criteria needs to be resolved (Reijers

and Mansar 2005). This leads to the following design

objective (DO):

(DO.1) Behavioral and outcome perspective on OA To

address the exploration/exploitation trade-off, it is neces-

sary to develop operational and dynamic capabilities (be-

havioral perspective). It is also necessary to treat

operational performance as a multi-dimensional concept

and to incorporate performance criteria for exploration and

exploitation (outcome perspective).

2.2 Project Portfolio Selection and Scheduling

Project portfolios include projects selected to achieve dis-

tinct objectives and to accomplish corporate change (Dye

and Pennypacker 1999; Project Management Institute

2013). Typically, not all available project candidates can be

implemented simultaneously, as they compete for scarce

resources (Archer and Ghasemzadeh 1999; Dye and Pen-

nypacker 1999). Thus, PPM deals with the management of

project portfolios to facilitate the effective usage of

resources, account for project interactions and constraints,

and balance stakeholder interests (Pellegrinelli et al. 2015;

Project Management Institute 2013). PPM also is an iter-

ative process as once-compiled project portfolios can be

reviewed repeatedly to cope with internal and external

changes (Stettina and Hörz 2015; Young and Conboy

2013). As PPM can also be tailored to specific project types

(Lehnert et al. 2016b), it is a suitable reference discipline

for tackling the exploration/exploitation trade-off in

dynamic business environments.

Two essential activities of PPM are project portfolio

selection and project scheduling. These activities cover the

selection of the most appropriate projects from a list of

candidates and the scheduling of selected projects for dis-

tinct planning periods in line with pre-defined performance

criteria and constraints (Archer and Ghasemzadeh 1999).

Project portfolio selection comprises five stages: pre-

screening, individual project analysis, screening, optimal

portfolio selection, and portfolio adjustment. Starting with

a pre-screening, project candidates are checked for strate-

gic alignment and whether they are mandatory. During

individual project analysis and screening, candidates are

evaluated individually regarding their impact on the per-

formance criteria such as cost, revenue, or customer sat-

isfaction. Project candidates are rejected in case their

anticipated effects do not satisfy pre-defined thresholds.

The optimal portfolio selection stage selects those projects

that jointly meet the performance criteria best. If projects

should be scheduled for distinct periods, this also happens

in this stage. Finally, the optimal project portfolio can be

adjusted if needed.

To make sensible project selection and scheduling

decisions, it is vital to account for project interactions and

constraints, for example latest completion dates or limited

budgets (Lehnert et al. 2016b). Project interactions can be

split into inter-temporal versus intra-temporal, determinis-

tic versus stochastic, and scheduling versus no scheduling

interactions (Kundisch and Meier 2011). Individual project

portfolios are affected by intra-temporal interactions,

whereas decisions on future projects depend on inter-tem-

poral interactions (Gear and Cowie 1980). Inter-temporal

project interactions affect in which order projects can be

implemented (Bardhan et al. 2004). A common inter-tem-

poral interaction is a predecessor-successor relationship,

where one project depends on the outcome of another

project (Lehnert et al. 2016b). As for intra-temporal

interactions, an example is that two projects require the

same scarce resource, e.g. special equipment or a specific

expert, such that they must not be scheduled for the same

period (Lehnert et al. 2016b). If project effects are certain

or were estimated as single values, interactions are deter-

ministic. If project effects are treated as random variables

and information about probability distributions are lever-

aged for decision-making purposes, they are stochastic

(Medaglia et al. 2007). Scheduling interactions only occur

if projects may start in different planning periods.

Beyond project portfolio selection and scheduling, PPM

encompasses the continuous monitoring of project imple-

mentation to ensure the realization of benefits (Beer et al.

2013; Rad and Levin 2006). Thus, project portfolio selec-

tion and scheduling are not one-off tasks (Martinsuo and

Lehtonen 2007; Petit 2012). Rather, they should be exe-

cuted repeatedly to review project portfolios (Kester et al.

2011). Such reviews entail the reassessment of once-esti-

mated project effects as internal and external changes may

cause the deletion, cancellation, or reprioritization of pro-

jects. It may also be necessary to add projects (Martinsuo

et al. 2014; Petit and Hobbs 2010). Thus, we specify the

following design objective:

(DO.2) Project portfolio selection and scheduling To

tackle the exploration/exploitation trade-off, it is necessary

to consider only projects that align with an organization’s
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corporate strategy, evaluate projects individually before

compiling them into project portfolios, consider project

interactions and constraints, and continuously review once-

compiled project portfolios.

3 Research Method and Evaluation Strategy

Our study follows the DSR process by Peffers et al. (2008).

Our artifact is an economic decision model that assists

organizations in selecting and scheduling exploration and

exploitation projects to maximize their firm value. The

model refers to the optimal portfolio selection stage of

Archer and Ghasemzadeh’s (1999) project portfolio

selection process. To specify the decision model’s design

specification in the design and development phase, we

combined normative analytical modeling and multi-criteria

decision analysis as research methods. Normative analyti-

cal modelling captures the essentials of decision problems

in terms of mathematical representations to produce pre-

scriptive results (Meredith et al. 1989). Multi-criteria

decision analysis helps structure decision problems by

incorporating multiple decision criteria, resolving conflicts,

and appraising value judgments (Keeney and Raiffa 1993).

Combining normative analytical modeling and multi-

criteria decision analysis is sensible for three reasons: First,

tackling the exploration/exploitation trade-off from a PPM

perspective requires valuating competing alternatives, i.e.

project portfolios. Second, the valuation of project portfo-

lios requires measuring the effects of exploration and

exploitation projects via performance criteria and resolving

trade-offs. Third, the number of project portfolios usually

is such high that they cannot be valued manually. Decision

models are beneficial as they serve as formal requirements

specification for software prototypes, which automate both

the compilation and valuation of project portfolios.

Cohon (2013) proposed a six-step procedure for solving

multi-criteria problems: (1) identification and mathematical

modeling of relevant decision criteria, (2) definition of

decision variables and constraints, (3) data collection, (4)

generation and valuation of alternatives, (5) selection of the

preferred alternative, and (6) implementation of the selec-

ted alternative. In addition, assumptions should be made

transparent. Steps (1) and (2) are crucial for the develop-

ment of the decision model, whereas steps (3) to (5) relate

to the application of the decision model. To develop the

decision model’s design specification, we proceeded as

proposed by Cohon (2013). First, we introduce the decision

model’s general setting in Sect. 4.1 and a layered con-

ceptual architecture in Sect. 4.2. In Sects. 4.3–4.5, we

derive and formalize decision criteria for each layer based

on the literature to capture the effects of exploration and

exploitation projects. Finally, we integrate these criteria in

an objective function that serves as decision variable.

To demonstrate and evaluate our decision model, we

adopted Sonnenberg and vom Brocke’s (2012) evaluation

framework, which covers two evaluation dimensions: ex-

ante/ex-post and artificial/naturalistic evaluation (Pries-

Heje et al. 2008; Venable et al. 2012). Ex-ante evaluation is

conducted before an artifact is instantiated, while ex-post

evaluation happens after instantiation. Naturalistic evalua-

tion requires artifacts to be challenged by real people,

tasks, or systems. Artificial evaluation takes places in

controlled settings. The evaluation framework comprises

four activities: EVAL1 to EVAL4 (Pries-Heje et al. 2008;

Venable et al. 2012). EVAL1 refers to the identification

and justification of the DSR problem and the derivation of

design objectives to assess whether artifacts address the

research problem. We reported on these activities in

Sects. 1 and 2. EVAL2 strives for validated design speci-

fications in terms of real-world fidelity and understand-

ability. To validate the decision model’s design

specification, we discussed it against the design objectives

and with industry experts. We report on results in

Sects. 5.1 and 5.2. EVAL3 strives for artificially validated

artifact instantiations to provide a proof of concept. To do

so, we implemented the decision model as a software

prototype, which we sketch in Sect. 5.3. Representing the

most elaborate evaluation activity, EVAL4 validates the

applicability and usefulness of artifact instantiations in

naturalistic settings, covering steps (3) to (5) of Cohon’s

procedure for solving multi-criteria problems. We applied

the software prototype to real data. We reflect on the results

of the prototype application in Sect. 5.3. Although this

comes close to a full-fledged EVAL4, we applied the

prototype to real-world data, not in an entirely naturalistic

setting. This is planned for future research.

4 Design Specification of the Decision Model

4.1 General Setting

The decision model helps determine which exploration and

exploitation projects an organization should implement in

which order become ambidextrous in an economically

reasonable manner. Its unit of analysis are project portfo-

lios, i.e. exploration and exploitation projects that have

been scheduled for distinct planning periods in line with

project interactions and constraints (Lehnert et al. 2016b).

Based on the principles of VBM, corporate decision-mak-

ing strives for maximizing an organization’s long-term firm

value. Thus, the decision model uses the risk-adjusted

expected net present value (NPV), an acknowledged proxy

of an organization’s long-term firm value, to valuate and
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compare project portfolios (Buhl et al. 2011; vom Brocke

and Sonnenberg 2015). The decision model recommends

the implementation of the value-maximizing portfolio. The

value-maximizing portfolio represents the economically

most reasonable way for the organization to become

ambidextrous and to balance exploration and exploitation

over time, based on the project candidates at hand.

Importantly, the decision model does not aim to estimate

the real NPV of project portfolios as precisely as possible,

but to compare portfolios based on a consistent calculation

logic. With OA being vital in dynamic environments, the

decision model needs to be applied repeatedly. This

enables accounting for internal and external changes by

adjusting, cancelling, or deleting projects, by adding new

projects, or by re-assessing project effects.

The decision model covers the optimal portfolio selec-

tion stage of Archer and Ghasemzadeh’s (1999) reference

process. Thus, it requires a list of project candidates as

input, which have already been checked for strategic fit. In

addition, the effects of these candidates must have been

estimated and challenged in the individual project analysis

and screening stages. In the optimal portfolio selection

stage, the decision model calculates the risk-adjusted

expected NPV for all admissible project portfolios, i.e.

portfolios that do not violate project interactions or con-

straints. The number of admissible project portfolios usu-

ally is large due to the combinatorial complexity entailed

by project selection and scheduling.

To illustrate how the decision model is working, Fig. 1

shows four exemplary project portfolios based on

exploitation and exploration projects. For example, port-

folio 1 includes all projects, where ‘‘Explore 1’’ and ‘‘Ex-

ploit 2’’ are scheduled for the first period, ‘‘Explore 3’’ for

the second, and ‘‘Explore 2’’ and ‘‘Exploit 1’’ for the third

period. In addition, we assume that there are two interac-

tions: ‘‘Explore 1’’ and ‘‘Explore 3’’ require the same

domain expert, and ‘‘Explore 3’’ requires the output of

‘‘Exploit 2’’. Thus, ‘‘Explore 1’’ and ‘‘Explore 3’’ must not

be scheduled for the same period (intra-temporal interac-

tion), and ‘‘Exploit 2’’ must be finished before ‘‘Explore 3’’

can start (inter-temporal interaction). In the example,

portfolios 2 and 3 are not admissible as portfolio 2 violates

the intra-temporal interaction, whereas project portfolio 3

violates the inter-temporal interaction. Portfolios 1 and 4

are admissible and valuated in terms their risk-adjusted

expected NPV. Here, portfolio 1 is the value-maximizing

portfolio.

4.2 Conceptual Architecture

As mentioned in Sect. 4.1, the decision model calculates

the risk-adjusted expected NPV of admissible project

portfolios by linking the effects of exploration and

exploitation projects across multiple planning periods. To

do so, the decision model builds on a conceptual archi-

tecture with three layers: project layer, behavioral layer,

and outcome layer. Figure 2 shows the conceptual archi-

tecture for a single period. After a high-level overview in

this section, we define each criterion layer-by-layer based

on the literature and provide examples in Sects. 4.3–4.5.

We also outline assumptions and propose mathematical

equations that formalize the relations among the criteria.

We critically reflect on assumptions in Sect. 5.1. An

overview of all mathematical variables used in the decision

model can be found in Online Appendix 1.

The project layer is the basis for the compilation of

project portfolios (Lehnert et al. 2016b). It includes

exploration and exploitation project to cover both OA

modes (Duncan 1976; March 1991). This separation is

rooted in the structural approach (Pellegrinelli et al. 2015).

In line with the behavioral perspective (O’Reilly and

Tushman 2008; Wade and Hulland 2004), the behavioral

layer uses knowledge on operational capabilities to cover

how operations are organized (Zollo and Winter 2002). As

for dynamic capabilities, the behavioral layer covers an

organization’s transforming capabilities (Teece 2007). The

decision model abstracts from sensing and seizing capa-

bilities, a decision that we reflect in Sect. 5.1. Drawing

from the outcome perspective (He and Wong 2004; Jansen

et al. 2009), the outcome layer uses knowledge on VBM

and performance measurement (Buhl et al. 2011; Franco-

Santos et al. 2012; Reijers and Mansar 2005). It includes

monetary and non-monetary performance criteria for

exploration, e.g. innovation degree, and exploitation, e.g.

quality and time (Dumas et al. 2013; He and Wong 2004).

In single planning periods, monetary and non-monetary

performance criteria are aggregated into the periodic cash

flow, an input parameter of the risk-adjusted expected

NPV. Defined as the sum of periodic cash flows discounted

by a risk-adjusted interest rate, the risk-adjusted expected

NPV covers all planning periods and enables comparing

project portfolios (Copeland et al. 2005; Damodaran 2012).

As depicted in Fig. 2, exploration and exploitation

projects influence the criteria included in the behavioral

and the outcome layer. Further, the criteria from the

behavioral and the outcome layer are linked as operational

and non-monetary performance criteria must be monetized

to calculate periodic cash flows and the risk-adjusted

expected NPV (Bolsinger 2015; Damodaran 2012). To do

so, we distinguish between direct and indirect effects.

Direct effects either link a project type and a criterion from

the behavioral or the outcome layer or two criteria,

meaning that one criterion influences the other. For

example, this applies to time and demand. Indirect effects

moderate direct effects, meaning that a criterion influences

the strength of a direct effect. For example, flexibility-to-
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Fig. 2 Conceptual architecture of the decision model (single-period view)
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change moderates the effect of exploration projects on

investment outflows. Many effects, particularly those in the

outcome layer, have an unambiguous polarity. For exam-

ple, investment outflows have a negative effect on the

periodic cash flow. Other effects, particularly those origi-

nating from the project layer, are ambiguous, meaning that

they depend on the project at hand (Linhart et al. 2015). For

example, while exploitation projects can in general affect

time positively, negative, or not at all, the effect of a

specific project is unambiguous.

To illustrate how project effects cascade through the

conceptual architecture, we provide two examples. First,

consider an exploration project that improves an organi-

zation’s innovation degree and flexibility-to-use, i.e. its

ability to deal with nonroutine activities. The positive

effect on flexibility-to-use reduces the processing time.

This, in turn, increases the expected demand and results in

increased operating and periodic cash flow. Likewise, a

higher innovation degree increases the expected demand,

and transitively the operating as well as the periodic cash

flow. Second, consider an exploitation project that

decreases the nonroutine ratio, i.e. the fraction of opera-

tions requiring special treatment, and increases processing

time. A lower nonroutine ratio decreases the operating

outflows and increases quality, a circumstance that

increases the demand. However, the exploitation project

also increases time, an effect that reduces expected

demand. In this example, the positive effect of increased

quality and the negative effect of increased time may

cancel each other out. Further, both projects cause invest-

ment outflows.

4.3 Project Layer

The project layer includes exploration and exploitation

projects (Chandrasekaran et al. 2012; O’Reilly and Tush-

man 2008). This separation helps keep the decision model

parsimonious. Hybrid forms, which occur in industry, can

be covered by linking exploration and an exploitation

projects via project interactions. Below, we overview the

effects of both project types, which are also compiled in

Appendix 1 (available online via http://link.springer.com)

along corresponding mathematical variables.

4.3.1 Exploitation Projects

Exploitation projects strive for efficient operations by

means of incremental innovation and the development of

operational capabilities (O’Reilly and Tushman 2008). On

the one hand, exploitation projects can directly influence

operational performance criteria, i.e. quality, time, and

operating outflows, located in the outcome layer (Dumas

et al. 2013; Winter 2003). On the other hand, they can

affect those characteristics from the behavioral layer that

characterize the organization of work, i.e. nonroutine ratio

and mandatory task ratio (Linhart et al. 2015). The latter

reflects the fraction of routine tasks also included in non-

routine activities. For example, the implementation of a

quality management system may increase quality and fixed

outflows. Further, a process standardization project may

reduce operating outflows and decrease the nonroutine

ratio. All exploitation projects cause investment outflows.

4.3.2 Exploration Projects

Exploration projects strive for radical innovation and the

development of an organization’s transforming capabilities

(O’Reilly and Tushman 2008). On the one hand, explo-

ration projects can improve the organization’s innovation

degree, while worsening operating outflows. The innova-

tion degree measures an organization’s innovativeness as

perceived by its customers (He and Wong 2004). The

second effect is rooted in the fact that organizations at first

have no experience with innovative products and services.

Thus, once-achieved cost-reducing experience curve

effects are partly destroyed (Sarkees and Hulland 2009).

On the other hand, exploration projects can strengthen an

organization’s flexibility-to-use and flexibility-to-change

capabilities, which are known to make nonroutine opera-

tions more time-efficient and the implementation of future

projects more cost-efficient (Gebauer and Schober 2006;

Lehnert et al. 2016b). For example, introducing new pro-

duct features may improve the innovation degree, while

experience curve effects are destroyed, and outflows raise.

The implementation of a modular production technology

improves flexibility-to-use capabilities. Further, training

employees in project management increases an organiza-

tion’s flexibility-to-change capabilities.

As the experts, who participated in the decision model’s

evaluation, suggested, the decision model accounts for

incremental and radical innovation (Schilling 2015).

Incremental innovation can be implemented by exploita-

tion projects, i.e. small improvements of routine opera-

tions, whereas radical innovation is captured via

exploration projects, i.e. next-generation products or

extensions of existing products or services. The decision

model thus abstracts from disruptive innovation, as related

effects are difficult to estimate and cannot be reasonably

integrated in a decision model that schedules projects to

multiple planning periods in advance (Schilling 2015).

To account for the effects of both project types, we

assume (Lehnert et al. 2016b): Project effects become

manifest immediately after project completion. They can be

assessed independently from other projects, available as

relative numbers and linked multiplicatively. Projects can

take differently long, and multiple projects can be
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implemented in parallel to enable simultaneous engage-

ment in exploration and exploitation. We discuss impli-

cations of this assumption in Sect. 5.1.

4.4 Behavioral Layer

4.4.1 Operational Capabilities

The behavioral layer covers criteria related to an organi-

zation’s operational and transforming capabilities. Opera-

tional capabilities refer to the efficiency and effectiveness

of daily operations and the organization of work (Winter

2003; Zollo and Winter 2002). Operations are typically

streamlined by standardization and automation (Karmarkar

2014; Johnston et al. 2012). Thereby, routine and nonrou-

tine operations must be distinguished as both have a dif-

ferent performance. While routine operations handle

processes with well-defined inputs and outputs, nonroutine

operations handle activities that require special treatment

(Lillrank 2003). Two useful criteria for distinguishing

routine and nonroutine operations are nonroutine ratio and

mandatory task ratio (Linhart et al. 2015). The nonroutine

ratio captures the fraction of activities that require special

treatment. The mandatory task ratio indicates which frac-

tion of routine activities are also included in nonroutine

operations. Both ratios can be influenced by exploitation

projects. Their value in a distinct period depends on their

initial value and related effects of previously implemented

exploitation projects. Equations 1 and 2 quantify this

relationship.

Ny ¼ N0 �
Y

j2EXPLOIT COMPy�1

oj ð1Þ

My ¼ M0 �
Y

j2EXPLOIT COMPy�1

pj ð2Þ

4.4.2 Transforming Capabilities

Transforming capabilities capture an organization’s ability

to reconfigure operational capabilities and facilitate change

(Teece 2007). As flexibility is closely related to organiza-

tional change, we use related knowledge to operationalize

transforming capabilities (Afflerbach et al. 2014). Gebauer

and Schober (2006) distinguish flexibility-to-use and flex-

ibility-to-change. Flexibility-to-use makes nonroutine

operations more time-efficient, as it reduces preparation

and setup times. For instance, the implementation of a

modular production technology improves flexibility-to-use,

which reduces the processing time of nonroutine opera-

tions. Flexibility-to-change makes the implementation of

projects more cost-efficient (Lehnert et al. 2016b). This can

be achieved by training employees in project management

methods. Flexibility-to-use and -change can be affected by

exploration projects. Their value in a distinct period

depends on their initial value and related effects of previ-

ously implemented exploration projects. The respective

formulae are shown in Eqs. 3 and 4.

Fuse
y ¼ Fuse

0 �
Y

j2EXPLORE COMPy�1

bj ð3Þ

Fchange
y ¼ F

change
0 �

Y

j2EXPLORE COMPy�1

cj ð4Þ

4.5 Outcome Layer

4.5.1 Risk-adjusted Expected Net Present Value

The outcome layer covers monetary and non-monetary

performance criteria. These criteria are directly influenced

by exploration and exploitation projects, or transitively via

criteria from the behavioral layer. From a single-period

perspective, which is taken in Fig. 2, performance criteria

are successively monetized and aggregated to the periodic

cash flow (Bolsinger 2015). From a multi-periodic per-

spective, periodic cash flows influence the risk-adjusted

expected NPV, which is the decision model’s objective

function and used to compare project portfolios (Damo-

daran 2012). Below, we first provide details on the risk-

adjusted expected NPV, before elaborating on its

components.

The risk-adjusted expected NPV, as shown in Eq. 5,

measures the value contribution of a project portfolio as the

sum of its discounted periodic cash flows based on a risk-

adjusted interest rate (Copeland et al. 2005; Damodaran

2012). The argmax function used in Eq. 5 returns the

value-maximizing portfolio. The risk-adjusted expected

NPV builds on the periodic cash flows, which are split into

investment outflows, fixed outflows, and operating cash

flows (Lehnert et al. 2016b). Investment outflows accrue

for the implementation of projects. By definition, fixed

outflows occur independently from the demand, i.e. no

matter how many products and services are sold. An

example is the maintenance of a production system or

workflow management system. In contrast, operating cash

flows depend on the expected demand, sales price, and

operating outflows. The demand reflects how many prod-

ucts and services are sold. In our decision model, the

demand is driven by time, quality, and innovation degree

(Linhart et al. 2015; Oubiña et al. 2007). As the demand is

highly company-specific, we do not further specify it here.

The price mirrors how much customers pay per unit of sold

products and services, and it is assumed to be constant.

Finally, operating outflows accrue for the production of

products and services. To complete the presentation of the

decision model, we elaborate on each component of the

NPV below.
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4.5.2 Investment Outflows

The investment outflows in a distinct period depend on the

exploration and exploitation projects that are currently

running in that period. As the decision model allows for

scheduling several projects for one period as well as dif-

ferently long projects, the investment outflows can

encompass several projects. In addition, they depend on the

flexibility-to-change level that has been achieved by the

prior implementation of exploration projects. Both effects

are shown in (Eq. 6).

Oinv
y ¼

X

j2ðEXPLOIT RUNy[EXPLORE RUNyÞ
Oinv

j � Fchange
y ð6Þ

4.5.3 Fixed Outflows

In line with the differentiation between routine and non-

routine operations, there are fixed outflows for routine

operations, e.g. for wages or standard IT services, and

nonroutine operations, e.g. for preparatory tasks or con-

figurable IT services. The total fixed outflows in a distinct

period depend on the initial fixed outflows for routine and

nonroutine operations as well as on related effects of pre-

viously implemented exploitation projects. The formulae

are shown in Eqs. 7 to 9.

Ofix
y ¼ Ofix;R

y þ Ofix;NR
y ð7Þ

Ofix;NR
y ¼ O

fix;NR
0 �

Y

j2EXPLOIT COMPy�1

mj ð8Þ

Ofix;R
y ¼ O

fix;R
0 �

Y

j2EXPLOIT COMPy�1

nj ð9Þ

4.5.4 Operating Outflows

The average total operating outflows must account for

routine and nonroutine operations, too. To do so, the

nonroutine ratio weighs the outflows for routine and non-

routine operations, as shown in Eq. 10. The operating

outflows for both routine and nonroutine operations in a

distinct period depend on their initial values and related

effects of all exploitation projects completed so far. The

operating outflows for nonroutine operations further

comprise the fraction by which nonroutine operations

include routine tasks as represented by the mandatory task

ratio as well as outflows that capture additional effort for

nonroutine operations, e.g. for extensive manual work. This

is shown in Eq. 11. Operating outflows for routine opera-

tions are reduced by experience curve effects, as shown in

Eq. 12. There are no experience curve effects for nonrou-

tine operations due to their non-repetitive character.

Experience curve effects capture the positive effects of

executing routine operations (Henderson 1973). The more

demand is handled by routine operations, the higher the

experience curve effects. This is because operating out-

flows drop by a constant factor each time the cumulated

demand doubles (Henderson 1973). This effect is formal-

ized via a power law function with constant elasticity, as

shown in Eq. 13. However, radical innovation as imple-

mented via exploration projects partly destroys experience

curve effects, as the cumulated demand is partly reset

(Sarkees and Hulland 2009).

Oop
y ¼ Oop;R

y � 1� Ny

� �
þ Oop;NR

y � Ny ð10Þ

Oop;NR
y ¼ My � Oop;R

y þ �Oop;NR
0 �

Y

j2EXPLOIT COMPy�1

kj ð11Þ

Oop;R
y ¼ O

op;R
0 � Ey �

Y

j2EXPLOIT COMPy�1

lj ð12Þ

Ey ¼ dj � CDy�1

� ��a ð13Þ

4.5.5 Time

Time and operating outflows can be treated similarly, as

both depend on criteria from the behavioral layer. Thus, the

average total processing time consists of a component for

routine and nonroutine operations, weighted by the non-

routine ratio, as shown in Eq. 14. The processing time of

routine operations covers waiting time and working time,

whereas for nonroutine operations, additional time must be

considered to capture more complex work and setup. Based

on the mandatory task ratio, the processing time of non-

routine operations partly depends on the processing time of

routine operations. The additional processing time for

nonroutine operations also depend on the organization’s

flexibility-to-use capabilities. The average total processing

time in a given period depends on the initial processing

time of routine and nonroutine operations and time effects

of previously implemented exploitation projects. This is

formalized in Eqs. 15 and 16.

ty ¼ tRy � 1� Ny

� �
þ tNRy � Ny ð14Þ

tNRy ¼ My � tRy þ �tNR0 � Fuse
y �

Y

j2EXPLOIT COMPy�1

ej ð15Þ
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tRy ¼ tR0 �
Y

j2EXPLOIT COMPy�1

fj ð16Þ

4.5.6 Quality

The average total quality in a distinct period depends on

the nonroutine ratio as well as on the quality of routine

and nonroutine operations. This is shown in Eq. 18. As

there is no direct relationship between routine and non-

routine quality, both can be assessed independently

(Linhart et al. 2015). Moreover, they depend on their

initial value and the quality effects of previously imple-

mented exploitation projects, as shown in Eqs. 19 and 20.

To account for the property that quality typically has an

upper boundary, e.g. error rates cannot exceed 100%, the

decision model integrates such a boundary in Eq. 17

(Dumas et al. 2013; Leyer et al. 2015). Thus, money may

be wasted if an exploitation project with strong quality

effects is implemented and quality is already very close to

its upper boundary.

qy ¼ min qtotaly ; qmax
� �

ð17Þ

qtotaly ¼ qRy � 1� Ny

� �
þ qNRy � Ny ð18Þ

qNRy ¼ qNR0 �
Y

j2EXPLOIT COMPy�1

gj ð19Þ

qRy ¼ qR0 �
Y

j2EXPLOIT COMPy�1

hj ð20Þ

4.5.7 Innovation Degree

Finally, the innovation degree measures an organization’s

innovativeness as perceived by its customers (He and

Wong 2004). To calculate the innovation degree, it is not

necessary to distinguish between routine and nonroutine

operations. Further, the innovation degree is influenced by

exploration projects. Accordingly, the innovation degree

in a distinct period depends on its initial value, the pos-

itive effects of all previously implemented exploration

projects, and the negative effects of all degeneration

effects accumulated up to that period. This is shown in

Eq. 21. The decision model features a degeneration effect

to penalize if the organization focuses too much on

exploitation. This is common as the innovativeness of

products and services perceived by customers decreases

over time if the organization does not invest in explo-

ration (Schilling 2015).

iy ¼ i0 �
Y

j2EXPLORE COMPy�1

aj ð21Þ

5 Evaluation

5.1 Feature Comparison

In line with our evaluation strategy, we discussed the

decision model’s design specification against the design

objectives and with industry experts. The discussion

against the design objectives, an artificial evaluation

method known as feature comparison, helps assess whether

the decision model addresses the research problem. In

contrast, expert interviews helped challenge the decision

model’s real-world fidelity and understandability. In sum,

feature comparison revealed that the decision model

addresses both design objectives, but not to the full extent.

The decision model is beset with limitations from a theo-

retical perspective for the sake of increased applicability.

However, as supported by the experts’ feedback, the

decision model is understandable for analytically versed

practitioners from medium-sized and larger organizations,

and it covers most constellations that occur in industry

settings. We discuss the results of feature comparison and

the expert interviews below.

Regarding design objective (DO.1), which refers to the

behavioral and outcome perspectives, the decision model

builds on exploration and exploitation projects to cover

both modes. Admittedly, the distinction between explo-

ration and exploitation projects is simplifying. However,

the decision model can deal with hybrid forms, which

occur in industry, by linking exploitation and exploration

projects via project interactions. Both project types have

distinct effects on characteristics of operational and trans-

forming capabilities from the behavioral layer as well as on

the innovation degree and operational performance criteria

from the outcome layer, which are aggregated to the risk-

adjusted expected NPV. All project effects included in the

decision model are backed by literature. Although the risk-

adjusted expected NPV is an accepted objective function, it

accounts only implicitly for the risks associated with cor-

porate decisions via a risk-adjusted interest rate. This

complies with the decision model’s focus on deterministic

project effects, an assumption we discuss below. Theoret-

ically, it would be possible to account for risks more

explicitly, e.g. via probability distributions and certainty

equivalents. However, this would considerably increase the

decision model’s complexity and reduce its applicability.

For example, the incorporation of project effects with

probability distributions typically prohibits that the optimal

project portfolio can be determined analytically. Instead,

simulation or complex numerical approaches are required.

As for dynamic capabilities, the decision model focuses on

transformation capabilities. This is reasonable as sensing

capabilities, i.e. the detection of opportunities, problems,
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and changes, become manifest between subsequent appli-

cations of the decision model. Hence, we recommended

applying the decision model repeatedly. As for seizing

capabilities, i.e. the determination of investment strategies,

the decision model itself contributes to an organization’s

seizing capabilities, as it guides the selection and

scheduling of exploration and exploitation projects.

As for design objective (DO.2), which refers to project

portfolio selection and scheduling, the decision model is

located at the optimal portfolio selection stage of Archer

and Ghasemzadeh’s (1999) reference process. Thus, it

requires the results of all previous stages as input. The

decision model also caters for various project interactions

and constraints. However, it assumes that project effects

are deterministic, can be assessed prior to the application of

the decision model in terms of relative numbers, and

become manifest immediately after project completion.

Though being common, these assumptions simplify reality.

The reason for focusing on deterministic effects is that

stochastic effects entail much more data collection effort

and can hardly be assessed in naturalistic settings, if at all.

While the consideration of stochastic effects would

increase real-world fidelity, it would substantially increase

the model’s complexity reduce applicability. As shown in

the prototype application, a scenario approach using opti-

mistic and pessimistic parameter estimations is a viable

compromise. Second, the ex-ante assessment of relative

project effects simplifies data collection and enables multi-

period decision-making. The absolute magnitude of such

effects depends on all previously implemented projects and

becomes manifest when project portfolios are valuated.

Otherwise, project effects had to be estimated for all pro-

jects combinations that may be implemented before. This is

infeasible owing to interdependencies and estimation

inaccuracies (Beer et al. 2013). Thus, we recommended

applying the decision model repeatedly to continuously

reassess once-estimated effects. Third, the assumption that

effects become manifest immediately after completion

neglects that benefits tend to realize with delay and only

partially. Our rationale for this assumption is the same as

for deterministic effects. Although this assumption leads to

an over-estimation of NPVs, it does not bias the results,

because the calculation logic of the decision model is

consistently applied to all project portfolios. Thus, the

ranking of the portfolios remains unchanged.

5.2 Expert Interviews

To complement feature comparison, we interviewed

industry experts involved in OA-related decision-making.

When recruiting experts, we specified the following crite-

ria: Individuals needed more than 10 years’ experience,

hold a leading position, and have substantial project

experience. On the aggregated level, we aimed to cover

various departments and industries, as OA is an interdis-

ciplinary phenomenon. We also required the experts to

differ by personal and academic backgrounds. We followed

a convenience sampling approach, i.e. we invited experts

from our personal network (Glaser and Strauss 1967).

Aware of the fact that convenience sampling is a non-

probability method, we choose it to gain initial insights into

the understandability and real-world fidelity of our decision

model (Saunders et al. 2012). Although we could draw

from a reliable network, it was hard to compile a sample

meeting the criteria above. We conducted interviews with

experts until we received no new insights and we agreed

that saturation had been reached. In total, we interviewed

eight experts as shown in Online Appendix 2.

We conducted a semi-structured interview with each

expert (Myers and Newman 2007). Interviews took about

90 min and were attended by two researchers. We provided

the experts with an initial version of the decision model’s

design specification, asking for comments on real-world

fidelity and understandability. Having introduced the ideas

of exploration, exploitation, and the associated trade-off,

we discussed the decision model’s conceptual architecture,

each criterion, and the effects among them. Overall, the

experts supported the relevance of our research and con-

firmed the research gap. They stated that their organiza-

tions are facing the exploration/exploitation trade-off, and

that guidance on how to prioritize investments in explo-

ration and exploitation is in high need. Nevertheless,

challenges regarding the application of the decision model,

the estimation of various input parameters, and the

implementation of real-world settings in a simplified way

are addressed by the experts. All in all, they considered the

decision model a valuable tool. An overview of the

experts’ feedback and how it was incorporated is included

in Online Appendix 3. Below, we present comprehensive

results.

As for real-world fidelity, the experts confirmed that the

decision model covers many constellations that occur in

their organizations. They appreciated that the decision

model builds on the principles of PPM and VBM, while

distinguishing between exploration and exploitation pro-

jects. In their opinion, PPM provides sufficient flexibility to

deal with manifold real-world constellations, whereas

VBM enables justifying OA decisions from a business

value perspective, an important feature when talking to

senior managers. The experts were also fine with the dis-

tinction between exploration and exploitation projects as

both can be combined. While the experts indicated that it

may be difficult to estimate the high number of effects for

many projects, they agreed that this problem is not specific

for the decision model at hand, but applies to PPM at large.

Beyond confirming the effects on monetary and non-

123

114 A. Linhart et al.: A Project Portfolio Management Approach to Tackling, Bus Inf Syst Eng 62(2):103–119 (2020)



www.manaraa.com

monetary performance criteria, the experts stated that

important effects included in the decision model also occur

in practice: degeneration of the innovation degree, explo-

ration projects’ destroying effect on the experience curve,

dependency of the demand on quality, time, and innovation

degree as well as the moderating effect of transforming

capabilities. The experts anticipated that some parameters,

i.e. innovation degree, demand, and transforming capabil-

ities, will be hard to estimate, while this is comparatively

easily for parameters such as time, quality, and operational

outflows. To challenge this assessment, we applied the

software prototype to real-world data. Details of the pro-

totype application including potential data sources can be

found in Online Appendix 4. A summary is presented in

Sect. 5.3.

Regarding understandability, the experts confirmed that

the decision model is understandable for analytically

versed experts typically involved in corporate decision-

making. According to the experts, the decision model’s

understandability is supported by its layered architecture,

the clear definition of included criteria, and the mathe-

matical formulas that capture the relation among the cri-

teria. The experts indicated that the decision model is

highly complex due to many intertwined criteria and its

multi-project multi-period nature. Nevertheless, they

acknowledged that the exploration/exploitation trade-off is

complex itself. A simple decision model would not suffice.

Given the model’s complexity, the experts also stated that

organizations, which plan to use the decision model,

require mature PPM and performance measurement capa-

bilities. Thus, the decision model particularly fits project-

and data-driven organizations that not only feature mature

capabilities, but also dispose of sufficient capacity to apply

the decision model and collect data. Admittedly, all inter-

viewed experts have been working with medium-sized or

large organizations. Understandability and real-world

fidelity of our decision model for small organizations and

other industries still needs to be assessed.

Based on the results of feature comparison and the

expert feedback, we conclude that the decision model

addresses both design objectives. It proposes compromises

between the full extent of theoretically possible formal-

ization and applicability. Further, the decision model is

understandable for analytically versed experts and covers

real-world constellations that typically occur in medium-

sized and large organizations. Both evaluation activities

showed that the decision model can be further developed in

the future. We get back to these indications in Sect. 6.

5.3 Prototype Construction and Application

To provide a proof of concept, we instantiated the decision

model’s design specification as presented in Sect. 4 as a

software prototype. The prototype is necessary to apply the

decision model, as the problem complexity heavily grows

with the number of projects and periods (Lehnert et al.

2016a). Having provided all input parameters, users can

define scenarios by enabling or disabling projects or con-

straints. The prototype then generates all admissible project

portfolios and calculates their value contribution as speci-

fied in the objective function. The prototype uses optimistic

and pessimistic effects to cater for estimation inaccuracies.

Finally, the prototype orders project portfolios by their

value contribution.

We also applied the prototype to real-world data to

challenge whether the model leads to sensible results, to

gain experience in data collection and insights into the

decision model’s applicability and usefulness. In this sec-

tion, we only present a summary. Details including all

input parameters, potential data sources, and optimization

results can be found in Online Appendix 4. To apply the

prototype, we collected data from an industry expert who

was working with an organization from the telecommuni-

cations industry and who had already participated in the

interviews. The expert provided us with input data for the

organization’s operations, projects, and the general setting.

We also defined scenarios. For each scenario, we assessed

the optimal and worst project portfolio, while accounting

for optimistic and pessimistic project effects.

The prototype construction confirmed that the decision

model can be implemented. Currently, the prototype is not

a full-fledged software product, but has been developed for

research purposes. It focuses on effectivity, i.e. the

implementation of the decision model’s design specifica-

tion. Efficiency in terms of fast solution times and a con-

venient user interface have not been in the center of

interest. The application of the prototype illustrated that the

decision model returns interpretable portfolios of explo-

ration and exploitation projects for multiple scenarios. We

demonstrated that the decision model can be applied and

input data can be collected, although the high number of

parameters entails substantial data collection effort. As

found in the expert interviews, some parameters are hard to

estimate. Thus, the decision model should be applied

repeatedly, not only to account for changes, but also to gain

experience in data collection. As for usefulness, the

industry expert was happy with the results as he could

interpret the choice of the optimal project portfolio and

think about scenarios in a structured manner. Further, the

prototype returned concrete solutions for his problem. The

expert also confirmed that the decision model as well as a

more efficient and user-friendly prototype would support

him in work. Thus, we conclude that the decision model is

applicable in real-world settings and useful for corporate

decision-makers. Nevertheless, we admit that we only

gained experience from one case. To further challenge the
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applicability and usefulness, we recommend conducting

additional case studies.

6 Discussion and Conclusion

Given the increasing importance of OA and the lack of

related prescriptive knowledge, we investigated how

organizations can decide which exploration and exploita-

tion projects they should implement to become ambidex-

trous in an economically reasonably manner. Adopting the

DSR paradigm, our artifact is n decision model that assists

organizations in selecting exploration and exploitation

projects as well as in scheduling these projects for distinct

planning periods. Drawing from prescriptive knowledge on

PPM and VBM, the decision model valuates project port-

folios based on their contribution to the long-term firm

value. The decision model further builds on exploration

and exploitation projects to cover both modes of OA.

Exploration projects improve an organization’s innovation

degree, decrease operational performance by partly

destroying experience curve effects, and enhance trans-

forming capabilities. Exploitation projects affect opera-

tional capabilities, i.e. nonroutine and mandatory task ratio,

and operational performance criteria such as time, cost, and

quality. We evaluated the decision model by following all

activities from Sonnenberg and vom Brocke’s (2012)

evaluation framework. We validated the decision model’s

real-world fidelity and understandability by discussing its

design specification against theory-backed design objec-

tives and with industry experts. We also instantiated the

decision model as a prototype and we applied the prototype

to real-world data to gain insights into applicability and

usefulness. Below, we first report on limitations, and then

point to theoretical and managerial implications.

Our research is beset with limitations related to the

decision model’s design specification and its evaluation. As

we discussed some limitations in Sect. 5, we only sketch

them here. As all mathematical models, our decision model

includes simplifying assumptions: It only caters for deter-

ministic project effects and treats risks rather implicitly via

a risk-adjusted interest rate. The decision model also

assumes that project effects become manifest immediately

after project completion and that they can be estimated ex-

ante in terms of relative numbers independently from other

projects. Moreover, in case a project lasts multiple periods,

the investment outflows are split proportionately. Most of

these assumptions are common in the literature. Never-

theless, they can be relaxed from a theoretical perspective.

On the one hand, this would increase the decision model’s

real-world fidelity. On the other, its applicability would

suffer, as data collection causes disproportionate effort.

The model would also benefit from further evaluation. We

were able to discuss the design specification with eight

experts whom we recruited from our personal network.

Although we do not consider convenience sampling a

limitation itself, we admit that, given its complexity, the

decision model should be discussed with further experts.

The same holds for the application of the decision model

and the prototype. So far, we applied the decision model to

real-world data, but not in a full-fledged naturalistic setting

including real people, tasks, and systems.

As for theoretical implications, our key contribution is a

well-founded and validated decision model that tackles the

exploration/exploitation trade-off. Building on mature

descriptive OA knowledge (He and Wong 2004; Jansen

et al. 2009; Gibson and Birkinshaw 2004; Tushman and

O’Reilly 1996) as well as prescriptive VBM and PPM

knowledge (Lehnert et al. 2016b; Linhart et al. 2015), the

decision model adds to prescriptive OA knowledge. The

decision model is the first to operationalize the structural

OA approach and to tackle the exploration/exploitation

trade-off analytically from a project portfolio selection and

scheduling perspective. In particular, the decision model

complements the work of Pellegrinelli et al. (2015), who

chose a longitudinal case-based design to understand how

OA can be achieved through projects and programs. While

Pellegrinelli et al. (2015) analyzed the business transfor-

mation program of a European retail bank over about 3

years, our decision model does not only compile the

manifold effects of exploration and exploitation projects in

an analytically traceable manner, but also support the

determination of the value-maximizing project portfolio.

Further, the decision model is the first to integrate the

outcome and behavioral perspective of OA by prioritizing

investments in exploration and exploitation. Earlier

research focused exclusively on the outcome perspective,

e.g. by investigating effects of exploration and exploitation

on operational performance (He and Wong 2004; Jansen

et al. 2009), or on the behavioural perspective, e.g. by

conceptually linking OA with dynamic capability theory to

understand how OA works in practice (O’Reilly and

Tushman 2008).

Fellow researchers can use the decision model’s design

specification and the prototypical instantiation as founda-

tion for their own work. They can address the limitations of

our decision model regarding the incorporation of

stochastic project interactions, the explicit treatment of

risks, and the ex-ante estimation of project effects. To do

so, researchers can draw from knowledge related to

stochastic optimization, simulation, and benefits manage-

ment. Whenever extending the model, we recommend

carefully deliberating for which limitations increased real-

world fidelity justifies additional data collection effort and

complexity. One must keep in mind that the decision model

does not aim to estimate the real NPV of project portfolios,
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but to compare them based on a consistent calculation

logic. As for limitations related to the decision model’s

evaluation, future research should seek the feedback of

further experts – specifically from hitherto uncovered

industries and small organizations. Such feedback will

provide insights into the model’s understandability and

real-world fidelity. Future research should also apply the

decision model in real-world settings to gain insights into

usefulness and applicability. Further case studies will help

identify how the decision model should be tailored to dif-

ferent organizational contexts. In the long run, these

insights may set the scene for developing a design theory

related to the exploration/exploitation trade-off. Another

worthwhile endeavor is the development of a knowledge

base related to OA decision-making. Such a knowledge

base should be co-created by researchers and practitioners,

including case descriptions and benchmarking data as well

as guidelines and good practices for data collection.

Beyond addressing limitations, future research may further

develop the software prototype. For example, the prototype

requires more advanced visualization, scenario, and sensi-

tivity analysis functionality. Finally, future research should

investigate how sensing and seizing capabilities can be

incorporated, accounting for the fact that these capabilities

can be developed over time as well.

As for managerial implications, our decision model

provides decision-makers with a structured overview of

criteria that influence the prioritization of exploration and

exploitation – including relations among these criteria.

Addressing the exploration/exploitation trade-off is a non-

trivial endeavor that needs continuous attention as inter-

dependent effects of projects on various performance cri-

teria must be balanced over time. These insights facilitate

informed discussions among decision-makers on the most

appropriate way to implement OA in specific contexts.

Business development and strategy departments as well as

program managers can use the design specification of our

model as a blueprint for deriving organization-specific

solutions and extending their own methods. When applying

the decision model, decision-makers can use the hints and

potential data sources listed in the prototype application. In

its current form, the decision model can be applied best in

medium-sized and large organizations operating in

dynamic business environments that dispose of mature

PPM and performance management capabilities and have

sufficient capacity to collect the required input data.
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Linhart A, Manderscheid J, Röglinger M, Schlott H (2015) Process

improvement roadmapping: how to max out your process. In:

36th International conference on information systems, Fort

Worth

Lubatkin MH, Simsek Z, Ling Y, Veiga JF (2006) Ambidexterity and

performance in small-to medium-sized firms: the pivotal role of

top management team behavioral integration. J Manag

32(5):646–672

March JG (1991) Exploration and exploitation in organizational

learning. Organ Sci 2(1):71–87

March ST, Smith GF (1995) Design and natural science research on

information technology. Decis Support Syst 15(4):251–266

Martinsuo M, Lehtonen P (2007) Role of single-project management

in achieving portfolio management efficiency. Int J Proj Manag

25(1):56–65

Martinsuo M, Korhonen T, Laine T (2014) Identifying, framing and

managing uncertainties in project portfolios. Int J Proj Manag

32(5):732–746

Medaglia AL, Graves SB, Ringuest JL (2007) A multiobjective

evolutionary approach for linearly constrained project selection

under uncertainty. Eur J Oper Res 179(3):869–894

Meredith J, Raturi A, Amoako-Gyampah K, Kaplan B (1989)

Alternative research paradigms in operations. J Oper Manag

8(4):297–326

Moreno-Luzon MD, Gil-Marques M, Arteaga F (2014) Driving

organisational ambidexterity through process management: the

key role of cultural change. Total Qual Manag Bus Excell

25(9–10):1026–1038

Myers MD, Newman M (2007) The qualitative interview in IS

research: examining the craft. Inf Organ 17(1):2–26

O’Reilly CA, Tushman ML (2008) Ambidexterity as a dynamic

capability: resolving the innovator’s dilemma. Res Organ Behav

28:185–206

O’Reilly CA, Tushman ML (2013) Organizational ambidexterity:

past, present and future. Acad Manag Perspect (Forthcoming).

Rock Center for Corporate Governance at Stanford University

Working Paper No. 142
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